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While small single-stranded viral shells encapsidate their genome
spontaneously, many large viruses, such as the herpes simplex
virus or infectious bursal disease virus (IBDV), typically require
a template, consisting of either scaffolding proteins or an inner
core. Despite the proliferation of large viruses in nature, the
mechanisms by which hundreds or thousands of proteins assem-
ble to form structures with icosahedral order (IO) is completely
unknown. Using continuum elasticity theory, we study the growth
of large viral shells (capsids) and show that a nonspecific template
not only selects the radius of the capsid, but also leads to the
error-free assembly of protein subunits into capsids with universal
IO. We prove that as a spherical cap grows, there is a deep poten-
tial well at the locations of disclinations that later in the assembly
process will become the vertices of an icosahedron. Furthermore,
we introduce a minimal model and simulate the assembly of a
viral shell around a template under nonequilibrium conditions
and find a perfect match between the results of continuum elas-
ticity theory and the numerical simulations. Besides explaining
available experimental results, we provide a number of predic-
tions. Implications for other problems in spherical crystals are also
discussed.

virus | self-assembly | scaffolding proteins | continuum elasticity theory

More than 50 y ago, Caspar and Klug (1) made the
striking observation that the capsids of most spherical

viruses display icosahedral order (IO), defined by 12 five-
coordinated units (disclinations or pentamers) occupying the
vertices of an icosahedron surrounded by hexameric units (Fig.
1). While many studies have shown that this universal IO is
favored under mechanical equilibrium (2–4), the mechanism
by which these shells grow, circumventing many possible acti-
vation barriers and leading to the perfect IO, remains mainly
unknown.

Under many circumstances, small icosahedral capsids assem-
ble spontaneously around their genetic material, often a single-
stranded viral RNA (5–9). However, larger double-stranded (ds)
RNA or DNA viruses require what we generically denote as the
template: scaffolding proteins (SPs) or an inner core (10–15).
The focus of this paper is on these large viruses that require a
template for successful assembly.

The major difficulty in understanding the pathway toward IO is
apparent from the results of the generalized Thomson problem,
consisting of finding the minimum configuration for interacting
M -point particles constrained to be on the surface of a sphere.
Simulation studies show that the number of metastable states
increases exponentially with M (16), and only with the help of
sophisticated optimization algorithms at relatively small values
of M (5, 17–19) is it possible to obtain IO ground states. These
situations, typical of spherical crystals, become even more dif-
ficult when considering the assembly of large capsids, in which
once protein subunits are attached and a few bonds are made, it
becomes energetically impossible for them to rearrange: Should
a single pentamer appear in an incorrect location, IO assembly
would fail.

The combined effect of irreversibility and the inherent expo-
nentially large number of metastable states typical of curved
crystals puts many drastic constraints on IO growth. The com-
plexity of the problem may be visualized by the various viral shells
illustrated in Fig. 1, characterized by a structural index, the T
number (1, 20–22) T = h2 + k2 + hk , with h and k arbitrary inte-
gers, such that the crystal includes 60T monomers or 10(T − 1)
hexamers and 12 pentamers (disclinations).

A possible mechanism to successfully self-assemble a desirable
structure might consist of protein subunits with chemical speci-
ficity, very much like in DNA origami (23) where structures with
complex symmetries are routinely assembled. In viruses, how-
ever, capsids are built either from one or from a few different
types of proteins, so specificity cannot be the driving mecha-
nism leading to IO (9, 18, 21, 24, 25). In this paper, we show
that a “generic” template provides a robust path to self-assembly
of large shells with IO. This is consistent with many experi-
mental data in that regardless of amino acid sequences and
folding structures of virus coat and/or scaffolding proteins, due
to the “universal” topological and geometrical constraints, large
spherical viruses need scaffolding proteins to adopt IO (Fig. 1).
Although the focus of this paper is on virus assembly, the impli-
cation of our study goes far beyond that and extends to many
other problems where curved crystals are involved, a point that
we we further elaborate in Conclusion (26, 27).

The distinct feature of spherical crystals is that their global
structure is constrained by topology. More concretely, if s(x) is
the disclination density, then∫

d2x s(x)= 2πχ, [1]

where χ is the Euler characteristic (χ=2 for a sphere). How-
ever, a capsid closes only at the end of the assembly, and thus
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Fig. 1. (A) From Left to Right: bacteriophage P22 (28), bacteriophage N4 (29), rotavirus (30), herpes simplex virus (31), phage ΦM12 (32), and pseudoal-
teromonas virus PM2 (33). The triangulation number of each virus is shown below it. The scaffolding proteins and hydrogenases inside the capsid of bacterio-
phage P22 and the inner shell of rotavirus are shown. To form structures with IO, all viruses shown need scaffolding proteins as illustrated for bacteriophage
P22. Only rotavirus requires a preformed scaffolding layer. Rotavirus belongs to the Reoviridae virus family, and these viruses all form T = 13 and have mul-
tishell structures. Bacteriophage P22 reprinted with permission from ref. 28, Springer Nature: Nature Chemistry, copyright (1995). Rotavirus reprinted from
ref. 30. Copyright (2003), with permission from Elsevier. Herpes simplex virus from ref. 31. Reprinted with permission from AAAS. Pseudoalteromonas virus
republished with permission of Microbiology Society, from ref. 33; permission conveyed through Copyright Clearance Center, Inc. Bacteriophage N4 and
phage ΦM12 are rendered in UCSF Chimera, based on Electron Microscopy Data Bank accession nos. EMD-1472 and EMD-5718. (B) Capsids obtained in the
simulations from Left to Right: T = 7, T = 9, T = 13, T = 16, T = 19, and T = 21.

Eq. 1 does not really restrict the number of disclinations during
the growth process, as pentamers or other disclinations may be
created or destroyed at the boundaries. For a complete shell, the
easiest way to fulfill Eq. 1 is with 12 q =+π

3
disclinations, and

this is the case we follow hereon.
A minimal model for spherical crystals consists of a free

energy

Fc =

∫
d2x

[
µu2

αβ +
λ

2
(uαα)

2

]
+
κ

2

∫
d2x (H (x)−H0)

2

≡F l
c +F b

c , [2]

where uαβ is the strain tensor. The coefficients µ,λ are the Lame
coefficients, which depend on the microscopic underlying inter-
actions. Here H (x) is the extrinsic curvature of the template, H0

the spontaneous curvature, and κ the bending rigidity. By inte-
grating the phonon degrees of freedom, we can recast the term
F l

c in Eq. 2 as a nonlocal theory of interacting disclinations, with
free energy (34)

F l
c =

K0

2

∫
d2xd2y [(K (x)− s(x))G(x, y)(K (y)− s(y))],

[3]

where K (x) is the Gaussian curvature and K0 is the Young
modulus. The disclination density s(x)=

∑12
i=1 qiδ(x− xi) has as

variables the positions of 12 disclinations, each of charge qi =
π
3

.
The function G(x, y) is the inverse of the Laplacian square (34).
All previous studies for the model in Eq. 3 have been done for
curved crystals without a boundary. In this paper, we provide the
necessary formalism to include the presence of a boundary.

A discrete version of Eq. 2 is given by (26, 27, 34, 35)

Fd =Es +Eb =
∑
i

1

2
ks(bi − b0)

2 +
∑
i,j

kb [1− cos(θij − θ0)]

[4]

with θ0 a preferred angle, related to the spontaneous curva-
ture H0. The stretching energy sums over all bonds i with
b0 the equilibrium bond length and the bending energy is
between all neighboring trimers indexed with ij . We further
assume that there is an attractive force between the trimers
and the preformed scaffolding layer (inner core) (see Fig. 4),
which, consistent with our minimal model, involves a simple
Lennard-Jones potential, ELJ =

∑
i 4ε[(

σ
ri
)12− 2( σ

ri
)6] with ε

the depth of the potential and σ the position of minimum
energy corresponding to optimal distance between the center
of the core and subunits. In Methods, we associate dynamics to
these models, which corresponds to following a local minimum
energy pathway.

Methods
Discrete Model. The growth of the shells is based on the following assump-
tions (6, 9, 19, 24): At each step of growth, a new trimer is added to the
location in the boundary which makes the maximum number of bonds
with the neighboring subunits. This is consistent with the fact that protein–
protein attractive interaction is weak and a subunit can associate and
dissociate until it sits in a position that forms a few bounds with neighbor-
ing proteins. These interactions eventually become strong for the subunits
to dissociate and trimer attachment becomes irreversible (5). The attractive
interactions between subunits, whose strength depends on electrostatic and
hydrophobic forces, are implicit in the model. Note that pH and salt can
modify the strength of protein–protein and protein–template interactions
and thus the growth pathway.

10972 | www.pnas.org/cgi/doi/10.1073/pnas.1807706115 Li et al.
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A crucial step in the assembly process is the formation of pentamers,
which occurs only if the local energy is lowered, as illustrated in Fig. 2.
After the addition of each subunit or the formation of a pentamer, using
the HOOMD package (36, 37), we allow the triangular lattice to relax and
to find its minimum energy configuration (20).

The proposed mechanism follows a sequential pathway where trimers (T)
attach to the growing capsid (C→ C′) according to the reaction

T + C � TC

TC→ C′ [5]

with characteristic rates kD, k′
D and kr . The rate kD = 2πDT RT is diffusion

limited, with RT the trimer radius and DT its diffusion coefficient, so that
the reaction speed is linear in trimer concentration vTC = kD[T], k′

D is the
detachment rate as the trimer searches for the local minimum, and kr

is the irreversible rate of attachment of the trimer to the capsid. The
combined reaction rate is therefore kT =

kr kD
k′D+kr

. Once the second reac-

tion in Eq. 5 takes place, there is no possibility for correcting mistakes:
If a pentamer forms in the incorrect location, IO is frustrated. With some
additional assumptions about the dependence of kr on the coordination
of the growing capsid, it is possible to derive overall rates for capsid
formation.

Two important parameters arise in discussing spherical crystals with the
model in Eq. 4. One is the Foppl von-Karman (FvK) number (26)

γ=
b2

0ks

kb
, [6]

which measures the ratio of stretching to bending moduli. When the FvK
number is large, the protein subunits optimize stretching and bend away
from their preferred radius of curvature, showing some degree of faceting,
which is the case of large viruses (Fig. 1). For the case of template-driven
self-assembly, we introduce a parameter

η=
kb

ε
, [7]

which measures the relative strength of the bending rigidity to the attrac-
tion of the trimers to the template. For small η, the proteins follow the core
curvature during growth all of the time, regardless of the protein’s sponta-
neous curvature. For large η, the shell detaches from the core and follows
its preferred curvature. In this paper we are mostly interested in the regime
η≈O(1) and γ� 1, where the template, rather than the spontaneous
curvature, dictates the size of the capsid.

Continuum Model. We now consider the model given in Eq. 3 on a spherical
cap with an aperture angle θm, so that its geodesic radius is Rm = θmR (see
Fig. 4B). The Lame term (Fl

c) in Eq. 3 can then be written as

Fl
c =

1

2K0

∫
d2x
√

g (∆χ)
2, [8]

where gµν is the metric defining the surface and the Laplacian is ∆ =

− 1√
g∂µgµν∂ν , with χ the Airy stress function that satisfies

Fig. 2. Dynamics of formation of a hexamer vs. a pentamer. Five trimers are
attached at a vertex with an opening angle close to π/3 at the top and much
smaller than π/3 at the bottom. If the energy per subunit of formation of
a pentamer Ep is higher than that of a hexamer EH, then a hexamer forms
(Top); otherwise, a pentamer assembles (Bottom).

1

K0
∆

2
χ(x) = s(x)−K(x). [9]

In SI Appendix, section S1, we provide the detailed calculations. We note
that approximate solutions of Eq. 9 are available under the assumption
that the Laplacian is computed with a flat metric (38), which immedi-

ately leads to
∫

d2xK(x) =
∫

d2x
R2 = A

R2 =π 6= 2χπ= 4π, directly violating
the topological constraint in Eq. 1. Therefore previous results (39) are
limited to small curvatures or aperture angles (θm�π). The general-
ization of Eq. 3 to include boundaries proceeds by defining the stress
tensor by the expression σαβ = gαβ∆χ(x)− gαµgβν∇µ∇νχ(x). We now
include a stress-free condition σαβnβ = 0 at the boundary, where nα

is the normal to the boundary. For a spherical cap (see Fig. 4B), we
use the metric ds2 = gµνdxµdxν = dr2 + R2 sin2(r/R)dφ2. Note that fol-
lowing the simulation outcomes, we ignore boundary fluctuations. This
is mainly because of the strength of protein–protein interactions and
line tension implicit in the growth model and is consistent with the
simulation results.

With the above definitions, the topological constraint in Eq. 1 is satisfied
exactly for a sphere. The free energy in Eq. 3 then becomes

Fl
c(θm, xi) = E0(θm) +

N∑
i=1

E0d(xi , θm) +
N∑

i=1

N∑
j=1

Êdd(xi , xj , θm) [10]

with E0 the free energy of the hexamers and E0d the interplay between
Gaussian curvature and pentamers, and Êdd describes disclination (pen-
tamer) interactions. It is convenient to separate this last term as

Fdd
c =

N∑
i=1

N∑
j=1

Êdd(xi , xj , θm) =
N∑

i=1

Eself (xi) +
N∑

i=1

N∑
j>i

Edd(xi , xj), [11]

where Eself (xi) is the disclination self-energy, which depends on the location
of a pentamer relative to the boundary.

Results
Consistent with the assumptions describing the dynamics of
growth noted in the previous section, we consider the spherical
cap (see Fig. 4B) with an aperture angle, which monotonically
varies from θm =0 to θm =π (sequential growth) as a function
of time θm(t). Then, for each value of θm we calculate the free
energy in Eq. 10 and compare it to the one with an additional
new defect (local condition). Once the latter one is favorable,
the new defect is added.

For small values of θm , the cap grows defect-free. In Fig. 3
we plot the energy of a spherical cap for θm =0.7. The dot-
ted line in Fig. 3 shows the disclination self-energy Eself , the
dashed line is the Gaussian curvature–disclination interactions
E0d , and the solid line is the sum of both energies as a func-
tion of the location of disclination in the cap. The diamond
in Fig. 3 corresponds to the minimum of energy and indicates
the location of the first (and only) disclination appearing in the
cap, around r ∼ 0.66R. This value is very close to the geodesic
distance following from the local “screening” of the Gaussian
curvature

∫
d2xs(x)=

∫
d2xK (x)→ π

3
=2π(1− cos(θm)) such

that r =arccos(5/6)R=0.59R. Somewhat counterintuitively,
the first disclination does not appear at the center of the cap,
which is the result of the competition between the disclination
self-energy whose minimum is at the boundary and the Gaussian
curvature–disclination interaction E0d with its minimum energy
occurring at the cap center; see SI Appendix, Fig. S2, where the
contour plots of the different elastic free energies as a func-
tion of the location of the first disclination, r are shown. As
the shell grows, the appearance of a new disclination becomes

Li et al. PNAS | October 23, 2018 | vol. 115 | no. 43 | 10973
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Fig. 3. The 1D energy plot for the first disclination. The dotted line
corresponds to disclination self-energy Eself (Eq. 11), the dashed line cor-
responds to the Gaussian curvature–disclination interactions E0d , and the
solid line is the result of the addition of both energies Fl

c − E0 (Eq.
10) as a function of the location of disclination in the shell for θm =

0.7. The energy goes through a minimum for r = 0.66R. Inset graph
shows the zoom-out energy plot where the circle region corresponds to
the main graph.

energetically favorable; i.e., a new energy valley for the for-
mation of a new disclination emerges, as illustrated in Fig.
4B, where we show the contour plots of total elastic energies
for spherical caps with θm =0.8 through θm =π. The bigger
ball in each plot indicates the position of the latest energy
well, which is where the addition of the next disclination takes
place. Remarkably, both in the continuum model and in sim-
ulations, during the growth process, the disclinations always
appear in the positions that eventually become the vertices of an
icosahedron.

Results from the discrete model in Eq. 4 are shown in
Fig. 4A. Here again, the disclinations universally appear at
the vertices of an icosahedron, in complete agreement with
the analytical calculation. The simulations were performed for
all values between T =7 and T =21 and in all cases the IO
was achieved without a single error. The size of the core in
Fig. 4A is commensurate with T =13 structures. We note that
for these simulations the protein’s spontaneous radius 1/H0 is
much smaller than the core radius, Rc (RcH0� 1), a point
that is discussed in more detail below. SI Appendix, Movie S1
illustrates the growth of a T =21 structure, which includes
420 triangles.

Fig. 5 shows the stretching energy vs. N (number of sub-
units assembled) as a T =13 shell grows for six differ-
ent values of FvK number γ > 1. We note that for large
spontaneous radius of curvature and small γ when bend-
ing rigidity is dominant, no large icosahedral shell assem-
bles successfully. Rather interestingly, there are conspicu-
ous differences in the dynamics as a function of the FvK
parameter γ.

For small values of γ=2 (thick black line in Fig. 5) the
shell elastic energy grows almost linearly as a function of N
but does not show IO. This takes place for higher γ values.
The arrows in Fig. 5 indicate a drop in the elastic energy
associated with the appearance of pentamers; see SI Appendix,
section S3 for more details. At the beginning of the growth, the
shells with different values of γ might follow different path-
ways and thus the number of hexamers might vary before the
first few pentamers form. However, as the shell grows, the pen-
tamers appear precisely at the same place, independently of
γ. Note that the bending energy of the shells always grows
linearly as a function of number of subunits for any γ (SI
Appendix, Fig. S3).

Discussion
Our results show that for large shells (T > 4) successful assem-
bly into IO requires a nonspecific attractive interaction between
protein subunits and a template. This interaction is implicit in
the continuum model and is included as a generic attractive
Lennard-Jones potential in the simulations. Furthermore, we
find that the location of pentamers is completely controlled by
the stretching energy as is the case in the continuum elasticity
theory.

In the absence of the template, small spherical crystals (T =1
and T =3) assemble spontaneously, for almost any FvK param-
eter γ. However, as we increase the spontaneous radius of
curvature, the final structure depends on the value of γ. For small
γ, large spherical shells without any specific symmetry form, and
at large γ > 5 curved hexagonal sheets, which eventually assem-
ble into tubular or conical structures, are obtained. Thus, our
results predict that large shells with IO cannot grow without a
template.

A template can have a significant impact on the structure
and symmetry of the shell. While a weak subunit–core attrac-
tive interaction has a minimal role in the shell shape, a very
strong subunit–core interaction will override the mechanical
properties of proteins. The subunits sit tightly on the template

A

B

Fig. 4. The snapshots of a T = 13 growth in discrete simulation (A) and continuum theory (B). The caps in A correspond to the simulation growth with
triangles representing the trimers. The yellow vertices belong to pentamers, blue ones to hexamers, and red ones to the cap edge. The gold core mimics
the preformed scaffolding layer or inner core. The caps in B denote the energy contour plots for the newest disclinations that appear in the purple energy
well, with geodesic shell size Rm = Rθm. The red region has the highest energy and the purple region the lowest one. There is a yellow ball in the position
of each disclination. The largest ball corresponds to a newly formed disclination.
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to form a sphere with no specific symmetry. We were able to
observe large shells with IO only for η∼ 1 but at high γ. In
this regime, for pentamers to overcome the core attraction and
form in the “correct” position, they must assume a symmet-
ric shape and buckle up (Fig. 1B). Indeed, a strong bending
energy is needed to overcome the shell adsorption. We find
that without decreasing γ (increasing kb) but with increasing
spontaneous curvature, the bending energy associated with the
deviation from the preferred curvature of subunits adsorbed to
the core becomes strong enough to make the pentamers buckle
and assume a smooth shape. Quite interestingly, we find that
this is the strategy that Nature has taken to form large shells
with IO.

The role of the inner core or the preformed scaffold layer pre-
sented above is very similar to the role of SPs, which assemble
at the same time as the capsid proteins (CPs); i.e., the template
grows simultaneously with the capsid (Fig. 6). In fact, one can
think of the inner core as a permanent “inner scaffold” (15). For
example, bacteriophage P22 has a T = 7 structure, but in the
absence of scaffolding (Fig. 1, P22) often a smaller T =4 forms.
Similarly, herpes simplex virus makes a T =16 structure but
without the SPs, a T =7 assembles. More relevant to the present
study is the case of infectious bursal disease virus (IBDV), a
dsRNA virus that in the presence of SPs forms a T =13 cap-
sid but in the absence the subunits assemble to form a T =1
capsid. This is exactly the condition for formation of the T =13
structure in Fig. 4 where the preferred curvature between sub-
units is such that in the absence of scaffold they form a T =1
structure. The Reoviridae virus family also forms T =13 but it
has multishell structures, which act as inner cores. For instance,
in this family bluetongue virus is a double-capsid particle, with
an outer (necessary for infection) and an inner capsid (encloses
RNA genome). The inner capsid, termed the “core,” has two
protein layers. The surface layer (or shell) is a T =13 capsid
that assembles around the inner shell, a T =2 structure (an inner
core). Interestingly, it has been suggested that there is an evolu-
tionary connection between SPs of IBDV and the inner capsid of
bluetongue virus (15).

Conclusions
Our model establishes that successful self-assembly of compo-
nents into a spherical capsid with IO requires a template that
determines the radius of the final structure. This template is very
nonspecific, and in its absence, protein subunits assemble into
either smaller capsids or structures without IO.

Fig. 5. The stretching energy of a T = 13 shell as a function of the num-
ber of trimeric subunits. For small FvK numbers (γ= 2, black line), there is
no significant drop in energy as a pentamer forms. However, for large FvK
numbers (γ� 1), the formation of pentamers drastically lowers the energy
of the elastic shell.

Fig. 6. The role of SPs in the formation of the T = 13 capsid of IBDV. With-
out SPs, the CPs (blue and white subunits) of IBDV form a T = 1 structure
(Top). In the presence of SPs (yellow subunits), they form a T = 13 structure
(Bottom). The results of our simulations are also illustrated next to each
intermediate step. Note that SPs (yellow subunits) do not assemble with-
out the CPs but probably experience some conformational changes during
the assembly. However, our focus here is solely on the impact of scaffolding
on the CPs, resulting in a change in the capsid T number. For preformed
SPs, as in the case of bluetongue virus, the core is spherical and there is no
indication of any changes in the size of the spherical template during the
assembly.

Even though the focus of this study was on the impact of the
preformed scaffolding layer, based on the experimental observa-
tions we conclude that the SPs, which assemble simultaneously
with CPs (Fig. 6), play basically the same role as the inner core in
the assembly of large icosahedral shells. Fig. 6 shows that in the
absence of SPs, CPs of IBDV form a T =1 structure but when
the same IBDV proteins coassemble with SPs (yellow units), a
T =13 forms. Fig. 6 also shows the pathway of formation of
T =1 and T =13 structures obtained in our simulations. We
emphasize that the mechanical properties of subunits are the
same for both shells, and the difference in structures arises from
the substrate or SPs.

The contribution of the SPs is twofold. The CPs of many
viruses including bluetongue virus noted above do not assemble
in the absence of SPs. On the one hand, it appears that SPs lower
the energy barrier and help capsid subunits to aggregate. On the
other hand, by forcing the CPs to assemble into a structure larger
than their spontaneous radius of curvature, they contribute to
preserving IO.

Examples of the role of templates in the formation of spherical
crystals are not limited to viruses, but include crystallization of
metals on nanoparticles (40), solid domains on vesicles (41, 42),
filament bundles (38), and colloidal assemblies at water–oil inter-
faces (43). Nevertheless, it has been shown (44) that sufficiently
rigid crystals grow as almost flat sheets free of defects, unable to
assemble with IO. This regime, however, seems not to be acces-
sible to viral capsids, as the hydrophobic interaction between
monomers forces close-packing structures that are incompatible
with grain boundaries.

This study sheds light at a fundamental scale on the role of
the mechanical properties of building blocks and scaffolding
proteins. The proposed mechanism is consistent with available
experiments on viruses involving either scaffolding proteins or
inner capsids. Further experiments will be necessary to validate
many predictions of our described mechanism.
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